
ABSTRACT

In this paper a new approach is taken to identify a crack in a simply supported
plate undergoing free vibration. The approach uses a Markov-Chain Monte-
Carlo implementation of Bayes’ Rule to identify the presence of a crack and,
more importantly, to estimate crack parameters; the process also provides con-
fidence intervals for those parameters. To generate the required time series, a
semi-analytical free response is constructed out of a finite element based eigen-
solution. This detection technique is applied to a cracked plate and effectively
identifies the crack location, orientation and length. The results show the utility
and accuracy of this method for a variety of cracks lengths, suggesting that even
small cracks may be detected.

INTRODUCTION

Cracks in plates tend to undermine structural performance and shorten life-
times. As such, a reliable and automated means for finding cracks early (while
small) would be of considerable use. But beyond identifying the presence of the
damage, it would be helpful to obtain information regarding the size, location,
and orientation of a crack. An ideal non-destructive crack detection method
would be able to: (i) find small cracks using a minimum number of sensors, (ii)
work reliably in real-time, (iii) operate successfully regardless of environmental
changes in the field, and (iv) provide results without response information from
an undamaged (healthy) structure as a baseline.
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Previous efforts have focused primarily on the presence and sometimes lo-
cation of damage, often by looking at variations in the vibration modes and
frequency spectra [1]. While other “features” in the data can be used, the ba-
sic idea is to look for damage-induced changes, or damage-specific patterns in
the data (see e.g., [2]). The main issue with the pattern recognition approach
is that it cannot provide specific information about the damage magnitude or
orientation. Making such an assessment would require storing vibration data
from every possible size, location, orientation, etc. and training a classifier.
In addition, one must consider environmental-induced patterns (e.g. tempera-
ture fluctuations). In short, data-driven approaches can only be as good as the
previously acquired data allows.

A different approach is to treat the problem as one of estimation: given
a parameterized damage model, estimate the parameters associated with the
damage. Recent efforts toward this goal include the work of Horibe & Watan-
abe [3] (using genetic algorithms) and a Bayesian identification approach used
by Ng et al.[4]. Treating the problem as one of estimation eliminates the need
for baseline data and buys the practitioner some immunity from environmental
variability. The challenge instead becomes one of developing a model that cap-
tures the influence of structural damage and then developing an estimator for
the parameters in that model.

Here we propose a model-based approach that uses a Markov-Chain Monte-
Carlo (MCMC) implementation of Bayes’ theorem to identify the damage pa-
rameters. Analytical models for a plate with a single crack exist [5], but exten-
sion to edge cracks, branched cracks or multiple cracks is, to the authors’ knowl-
edge, an unsolved problem. The finite element method (FEM) provides more
flexibility in the geometry considered, for both the plate and the crack. In this
work, a semi-analytical/FEM model is used. Finite elements are used to obtain
the frequencies and mode shapes and an analytical solution, based on this nu-
merical eigen-solution, is developed for the time response. The Bayesian/MCMC
approach developed here is used to identify the location, orientation, and size
of a crack. Additionally, because the Bayesian approach provides estimates of
the entire parameter probability distribution, confidence intervals may be easily
obtained. The method shows considerable promise for use in real applications.

DYNAMIC MODEL

The objective is to arrive at a computationally fast means for obtaining the time
response of the cracked plate. A classical modal analysis approach is taken. To
obtain the required eigenvalues and eigenvectors, the finite element method is
used. The structured mesh shown in Figure 1b is typical of those used in this
study. The model matches the theoretical predictions of the first and second
natural frequencies for a cracked plate [5] to within 0.5%. The unknown model
parameters are: the location of the center of the crack (xcrack, ycrack), the half
crack length (a), and the orientation of the crack measured from the positive
x-axis (α).

Fast efficient forward models are extremely important when using Monte



(a) (b)

Figure 1: (a) Schematic of Plate and Crack and (b) Typically Course FEM Mesh

Carlo methods such as the one proposed here. We have therefore chosen to use
quadrilateral Mindlin serendipity elements in forming the model. The elements
directly surrounding each crack tip are modified [6] to capture the 1/

√
r stress

distribution that dominates in the vicinity of the crack tip. This significantly
reduces the required mesh density and improves run-time. Small deflections are
assumed throughout. Also, it is assumed that the crack remains open, there
is no appreciable mass loss, and the crack does not grow. The crack tips are
restricted to be at least a half crack length (a) from the edge of the plate.

THE BAYESIAN ESTIMATION APPROACH

The prerequisites for a Bayesian analysis are observed, experimental data (y)
from the (possibly) damaged structure and a mathematical model containing
damage parameters (θ). The goal is to estimate the conditional posterior prob-
ability distribution p(θi|y), for the crack parameters, θ, given the data, y. Here,
the crack parameters are the location of the crack center, the crack length,
and the crack orientation relative to the positive x-axis: θ = {xcrack, ycrack, a,
α }. Any a-priori information about these parameters is encoded in the prior
distribution, pπ(θi). The key ingredient relating these two distributions is the
likelihood, pL(y|θ, σ2), formed by considering the net error in our observations.
The predicted response at some location “r” on the structure at time “n” will
differ from that of the experimental data by some amount. At the rth sensor,
this is

yrn = xrn + ηrn, n = 1, 2, 3....N, r = 1, · · · ,M (1)

where ηrn is the net error (model error + experimental noise), N is the number
of elements in the time series, and M is the number of sensors. If the error is
assumed Gaussian and independent, then the probability that the data y was
produced by the model, under the assumed parameters (θ) and variance (σ) is:

pL(y|θ, σ2) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

M∑
r=1

N∑
n=1

(yrn − xrn(θ))2

]
. (2)



Note that the dependence of the model response upon the model parameters is
made explicit: xn(θ). Bayes’ theorem can be used to relate the desired distri-
bution to the likelihood and priors:

p(θ, σ2|y) =
pL(y|θ, σ2) pπ(θ, σ2)

pD(y)
. (3)

The term on the left, p(θ, σ2|y), is the desired distribution. To get the indi-
vidual parameter distributions this expression must be integrated over all other
parameters. In what follows, the variance σ2 is absorbed into the parameter
vector θ for convenience.

In order to evaluate Eqn. (3) we use the Markov-Chain Monte-Carlo (MCMC)
approach. MCMC is a numerical method for evaluating the posterior probabil-
ity distributions p(θi|y) [7]. The idea is to generate a stationary Markov Chain
for each parameter in θ such that the values in the chain are, in fact, samples
from the individual parameter posterior distribution. For the ith parameter, an
initial parameter value θ

(0)
i chosen from the prior pπ(θi). The next element in the

chain is found by generating a trial value θ∗i = θ
(k)
i + q(θ∗i |θ

(k)
i ) and computing

the ratio:

r =
p(θ∗i |y)q(θ∗i |θ

(k−1)
i )

p(θ
(k−1)
i |y)q(θ

(k−1)
i |θ∗i )

=
pL(y|θ∗i )pπ(θ∗i ) q(θ

∗|θ(k−1)
i )

pL(y|θk−1
i )pπ(θk−1

i ) q(θ
(k−1)
i |θ∗i )

(4)

and accepting the new value with probability min(r, 1). If the trial succeeds,

the perturbed parameter value becomes the next value in the chain: θ
(k)
i = θ∗i ,

otherwise the previous value is retained. The process (accept/reject) repeats for
each parameter in the vector while holding the other parameters fixed, allowing
each parameter to be considered individually. Note that the ratio r removes
the need for the distribution pD(y), since it divides out. Thus the MCMC chain
eliminates the need for assessing Bayes’ theorem directly. Repeating this process
a sufficient number of times generates a chain that forms a probability density
function (PDF) for the true value of the crack parameters.

SIMULATION AND RESULTS

The plate under consideration is rectangular and simply supported on all sides.
The plate dimensions are given in Table 1. For the sake of this work, the
“measured data” y is a simulation with a crack geometry given in Table 2.
25dB noise was added to this signal to mimic experimental noise. The data in
Table 2 is referred to as the “true” parameter set θ.

Four displacement sensors (where the time series were recorded) were used.
The sensor locations are given by the triangles in Figure 2a. The initial condi-
tions approximated a hammer strike on the plate starting from rest. The strike
locations are shown in Figure 2a as circles. The Bernoulli trial success rate
varied between 35% and 50%. A total of seven runs were made, each with a
different crack length (5cm < a < 11cm); the point was to see how well the
technique identified successively smaller cracks.



Dimension Value

Length 1.25 m
Width 1.00 m
Thickness 0.01 m

Table 1: Plate Dimensions

Dimension Value

Crack Center (0.8, 0.6) m
1/2 Crack Length 0.05 to 0.11 m
Crack Angle -30◦

Table 2: Crack Parameters

(a) (b)

Figure 2: (a) movement of the crack parameter estimates during the burn-in
process and (b) the final distributions of the parameters, from the post-burn-in
phase of the Markov Chain.

Figure 2a shows how the initial guess (labeled 1) gradually evolves during
the “burn-in” phase, for the case a = 0.1m. By iteration 160, the estimate is
obviously close to the actual answer. After a 1500 iteration burn-in, the chain
is extended with an additional 20,000 iterations, which are used to generate
the final distributions showing in 2b. These distributions correctly identify the
crack parameters with a very tight variance.

Figure 3 shows how the 99% credible intervals vary as a function of crack
size. These results show that the proposed approach appears to work well,
producing narrow error bars for all parameters. In addition, these results show
that the ability to estimate crack parameters is not a monotonic function of
crack size. For the crack sizes considered in this study, smaller cracks are not
necessarily more difficult to identify than larger ones. However, for still smaller
cracks (< 0.05m) we expect algorithm performance to degrade.

CONCLUSIONS

In this paper, preliminary results are shown for the viability of using a Bayesian
approach to identify the size, location and orientation of a crack in a simply
supported plate. The technique shows promise by precisely and accurately lo-
cating a crack in the presence of 25dB Gaussian noise. In addition, the crack
size does not strongly affect the precision of the parameter estimates.



Figure 3: Estimate of crack parameters versus crack length. Error bars represent
the 99% credible interval. The first figure shows the error of the crack length.
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